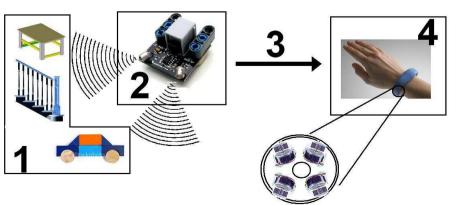


İlker D. Kanatlı Oğuzhan A. Bulut Ekin Kartal Esra Dokuzoğlu Berk Korkut Ceren Hasançebi

- About Business Plan
- Initial Design Intended
- Evolution & Alterations
 - during Fall Term
 - during Spring Term
- Final Product
- Future Plans

revised values according to recent changes:

o Total Cost:	\$2,943,300
o Total Revenue:	\$2,968,000
o Total Profit:	\$24,700
o Variable Unit Cost:	\$340.6
o Estimated Selling Price:	\$371


D Initial Design Intended

- As a company that values human most, we dreamed of a device to help the blind move independently
- We especially dreamed for vanishing the need for the cane to rehabilitate psychology of the visually impaired

C Initial Design Intended

- beginning of the course (proposal of the project):
 - sensor implementation
 - O Ultrasonic sensors to detect obstacles around and how far (resembling parking sensors' implementation principle) – input device
 - & tiny vibration motors (like the cellular phones') to inform the user of the obstacle – output device

 $_{\odot}$ Vibration motors to be placed on a wrist band

& sensors to be placed on a waist belt.

D Initial Design Intended

Implementation Principle has been roughly like this:

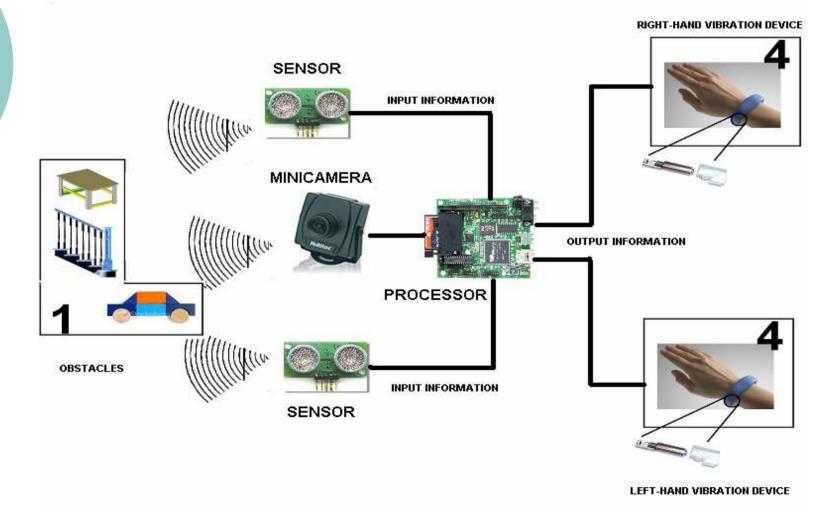
- Silent ultrasonic waves from the sensors bounce off objects sending back information about distance of objects.
- Sonar information is collected from the path ahead.
- Scanned objects normally produce multiple echoes, translated by the board into unique invariant pulses, which than translated to vibrations by the vibration devices according to the magnitude of the signal.
- The sound signatures vary according to how far away the person is from the object, thus indicating distance. The user senses these vibrations.

Drawbacks of Initial Design

- Ergonomics issues:
 - how the belt would be worn (under or over the clothes)
 - cables between input & output units
- Mentors of the course proposed camera implementation in order to provide more precise information about the obstacles

Evolution & Alterations (Fall)

- Shift to camera implementation
- o Design renewed:
 - Two wrist bands having vibration motors instead of one
 - One to interpret input from the camera & other to interpret input from sensors
 - Again sensors + a camera portable enough & having image processing capability
 - a processor board to process the image data received from the camera


D Evolution & Alterations (Fall)

camera implementation (cont')

- Left-hand wrist band:
 - 3 vibration devices will be located:
 - One at the front
 - One at the right
 - One at the left (Each vibration device will vibrate according to the direction of the obstacle)

- Right-hand wrist band:
 - 4 vibration devices will be located:
 - One at the front
 - One at the back
 - One at the right
 - One at the left (Each vibration device will vibrate for each pre-defined object which planned to defined by third party object detection software)

Evolution & Alterations (Fall)

C Evolution & Alterations (Fall)

- The evolved design remained same except the ergonomics which lacked user comfort:
 - the heart of the product (the camera or the sensors serving as an eye) is decided to be manufactured inside a special coverage with ar accessory allowing attachment over clothes
 - cables would still be tolerated
- at the end of Fall semester:
 - We had decided to first implement the sensor version of the product, than we would implement the camera version later when we decided on the image processing software for the camera

Evolution & Alterations (Spring)

 We did not change the design of Fall semester:

Focused on the implementation (followed a step by step approach):

• first implemented the sensor part of VIBRO-

- I (we showed as demo)
- o continued to work on the camera part

D Final Product

Difficulties encountered during implementation of image processing as intended by the design of fall term:

- Finding long-range sensors (2-3m long)
- Placing sensors on human body
- Bluetooth communication between input & output units
- Obejct detection using MATLAB
- Background filtering
- Detection of the object locations in each frame

G Final Product

Because of the difficulties, some basic changes:

- Shift to double camera implementation
- Both cameras capture frames synchronously
- Using object detection & background filtering for object recognition & distance information
- Third party object detection software

J Final Product

- sensor and camera implementation separately
- For camera implementation:
 - two cameras capture frames continuously & synchronously
 - using MATLAB, background filtering and finding location of objects (succeed)
 - with two separate cameras, finding the same objects on both frames (succeed)
 - using the frame matrix, calculating distance of the object (still working on it)

- Wireless technology (instead of cables between processor board and wrist bands)
- Earphones as output device (instead of wrist bands including vibration devices)
- GPS map information via earphones with the arrival of GPS maps for Turkey

THANKS FOR LISTENING QUESTIONS & COMMENTS